Table of Contents

VOLUME 1: Timber Bridges

INTRODUCTION

CHAPTER 1: Introduction to Wood

1.1 PROPERTIES OF WOOD

- 1.1.1 Variability
- **1.1.2** Specific Gravity
- 1.1.3 Modulus of Elasticity
- 1.1.4 Strength
- **1.1.5** Fire Performance
- **1.1.6** Thermal Properties
- 1.1.7 Chemical Resistance
- **1.1.8** Electrical Properties
- 1.1.9 Embodied Carbon

1.2 WOOD DETERIORATION

- **1.2.1** Fungal Decay
- **1.2.2** Insects
- **1.2.3** Marine Borers
- 1.2.4 Bacterial Degradation
- 1.2.5 Mechanical Damage
- 1.2.6 Photodegradation
- 1.2.7 Steel Corrosion in Timber Structures

1.3 ENGINEERED WOOD PRODUCTS

- 1.3.1 Glued Laminated Timber
- 1.3.2 Cross-Laminated Timber
- 1.3.3 Nail Laminated Timber
- 1.3.4 Plywood
- 1.3.5 Structural Composite Lumber
- 1.3.6 High-Strength Fibre Reinforcing

1.4 REFERENCES

CHAPTER 2: Detailing

2.1 HISTORY

2.2 TIMBER BRIDGE CONFIGURATIONS

2.3 TIMBER SUPERSTRUCTURES

- **2.3.1** Log Beam
- 2.3.2 Sawn Timber Beam
- 2.3.3 Glulam Beam
- 2.3.4 Longitudinal Deck/Superstructure
- 2.3.5 Pony Truss
- 2.3.6 Through Truss
- 2.3.7 Deck Truss
- 2.3.8 Glulam Arch
- 2.3.9 Suspension Bridge

2.4 TIMBER SUBSTRUCTURES

- **2.4.1** Sill Beam
- 2.4.2 Timber Cribbing
- 2.4.3 Pile Bents
- 2.4.4 Frame Bents

2.5 TIMBER DECKS

- 2.5.1 Lumber Planks
- 2.5.2 Nail Laminated Timber
- **2.5.3** Glulam

2.6 WEAR SURFACES

- 2.6.1 Asphalt Pavement
- 2.6.2 Asphalt Chip Seal
- 2.6.3 Epoxy Chip Seal
- 2.6.4 Timber Running Planks
- 2.6.5 Steel Running Plates
- 2.6.6 Aggregate Surface

2.7 ADVANTAGES OF TIMBER BRIDGES

- 2.7.1 Self-Weight
- **2.7.2** Costs
- **2.7.3** Rapid Installation
- **2.7.4** Prefabrication and Preservative Treatment

- 2.7.5 Chemical Resistance
- **2.7.6** Fatigue Resistance
- **2.7.7** Carbon Sequestration and Embodiment

2.8 REFERENCES

CHAPTER 3: Timber Bridges in Canada

3.1 SCALE OF TIMBER BRIDGE INDUSTRY

3.1.1 Recent Trends

3.2 WOOD SPECIES

- 3.2.1 Douglas Fir-Larch
- **3.2.2** Hem-Fir
- 3.2.3 Spruce-Pine-Fir
- 3.2.4 Northern Species
- 3.2.5 Eastern Hemlock Tamarack
- 3.2.6 Western Cedars
- 3.2.7 Northern Aspen
- **3.2.8** Coast Species
- 3.2.9 Southern Pine (U.S.)

3.3 ENGINEERED WOOD PRODUCTS

- 3.3.1 Glued-Laminated Timber
- 3.3.2 Cross Laminated Timber

3.4 PRESERVATIVES

- 3.4.1 Pesticide Regulations
- 3.4.2 Market Availability

3.5 NATIONAL CODES AND STANDARDS

- 3.5.1 Bridge Codes
- 3.5.2 Timber design standards
- 3.5.3 Preservative Standards
- **3.5.4** Design Manuals
- 3.5.5 Standard Specifications and Designs
- 3.5.6 Environmental Standards

3.6 PROVINCIAL STANDARDS

- 3.6.1 Bridge Codes
- **3.6.2** Standard Specifications
- 3.6.3 Standard Drawings
- **3.6.4** Maintenance and Inspection Manuals

3.7 REFERENCES

CHAPTER 4: Timber Bridge Service Life

- 4.1 INTRODUCTION
- 4.2 DECAY PREVENTION THROUGH DESIGN
- 4.3 DECAY RESISTANT SPECIES
- 4.4 CHEMICAL PRESERVATIVES
 - **4.4.1** Selecting and Preparing Wood for Treatment
 - 4.4.2 Water-borne vs Oil-borne
 - **4.4.3** Best Management Practices
 - 4.4.4 Preservatives Subject to Pedestrian Contact
 - 4.4.5 Oil Borne Preservatives
 - 4.4.6 Water-Borne Preservatives

4.5 FIELD AND REMEDIAL TREATMENTS

- **4.5.1** Copper Naphthenate Field Treatment
- **4.5.2** Zinc Naphthenate
- 4.5.3 Creosote
- 4.5.4 Inorganic Boron
- **4.5.5** Oxine Copper
- 4.5.6 Coal-Tar Roofing Cement
- 4.5.7 Fumigants
- 4.5.8 Diffusers

4.6 REFERENCES

CHAPTER 5: Wood and Water

5.1 MOISTURE IN TREES

- 5.1.1 Moisture Content and Green Wood
- **5.1.2** Range for Species

- **5.1.3** Seasonal Moisture Content
- **5.1.4** Range in Branches, Trunk, Roots During Different Times of the Year
- **5.1.5** Hygroscopicity and Fibre Saturation Point
- **5.1.6** Transverse and Volumetric Shrinkage
- **5.1.7** Longitudinal Shrinkage
- 5.1.8 Relationship Between Moisture Content and Shrinkage

5.2 MOISTURE CONTENT OF LUMBER

- **5.2.1** Sawing and Processing Parameters and Moisture Content
- 5.2.2 Moisture Content of Green and Dried Lumber
- 5.2.3 Kiln Drying
- 5.2.4 Drying Schedules
- **5.2.5** Moisture Content for Engineered Wood

5.3 WATER AND WOOD DESIGN VALUES

- **5.3.1** Specific Gravity
- **5.3.2** Moisture Content and Design Values
- **5.3.3** Wood is Anisotropic and Hygroscopic How These Characteristics Relate to Each Other
- **5.3.4** Typical Moisture Content of Timber Bridges
- **5.3.5** The Impact of Water on Connector Design Properties
- **5.3.6** Structural Evaluation of In-Service Timber Bridges

5.4 WATER MANAGEMENT IN ENCLOSED WOOD STRUCTURES

- **5.4.1** Connector Methods to Accommodate Shrinkage and Expansion Related to Hygroscopicity
- **5.4.2** Strength Considerations Related to Specific Gravity
- **5.4.3** Rotation Stiffness and Slip Distortion

5.5 HYBRID INDOOR-OUTDOOR CONSTRUCTION

- **5.5.1** Transition of Structural Elements from Indoors to Outdoors
- **5.5.2** Controlling Moisture Content in Hybrid Structures

5.6 OTHER WATER AND WOOD CONSIDERATIONS

- **5.6.1** Natural Wood and Water Variations
- **5.6.2** Connection Planning for Water Migration
- **5.6.3** Natural Durability of Wood and Relationship to Treatment
- 5.6.4 Treatment Considerations and Treatment Uptake by Wood

5.7 CONCLUSION

5.8 REFERENCES

CHAPTER 6: Timber Bridge Inspection

- **6.1 INTRODUCTION**
- **6.2 VISUAL INSPECTION**
- 6.3 TRADITIONAL DESTRUCTIVE TESTING
- 6.4 NON-DESTRUCTIVE TESTING
 - **6.4.1** Moisture Meter
 - **6.4.2** Stress Wave Timing
 - 6.4.3 Resistograph
 - 6.4.4 Pulse Echo Testing
 - **6.4.5** Ground Penetrating Radar

6.5 LABORATORY TESTING

- **6.5.1** Core Collection
- **6.5.2** Moisture Content
- **6.5.3** Specific Gravity
- **6.5.4** Species Identification
- **6.5.5** Fungal Spore Identification

6.6 QUALITY CONTROL TESTS

- 6.6.1 Wet / Dry Shear
- **6.6.2** Cyclic Delamination

6.7 REFERENCES

CHAPTER 7: Guide to Common Defects

7.1 INTRODUCTION

7.2 SITE DESIGN

- 7.2.1 Erosion and Scour
- **7.2.2** Vegetation
- **7.2.3** Debris
- **7.2.4** Animal Damage
- **7.2.5** Graffiti
- 7.2.6 Utilities and attachments

7.3 SUBSTRUCTURE

- **7.3.1** Piles
- **7.3.2** Caps
- 7.3.3 Abutments
- **7.3.4** Bents
- 7.3.5 Cribbing Compression Failures

7.4 SUPERSTRUCTURE

- **7.4.1** Flashing, Water-Resistant Barriers and Paint
- 7.4.2 Member Failure
- **7.4.3** Vertical Fasteners Into Superstructure Elements
- 7.4.4 Notch Cuts
- **7.4.5** Poor Connection Design
- **7.4.6** Truss Details
- 7.4.7 Spent Diffusers
- 7.4.8 Exposed Nontreated Wood

7.5 DECK ISSUES

- **7.5.1** Vertical Penetrations into Deck Elements
- 7.5.2 Drainage Problems
- 7.5.3 Pavement Issues
- 7.5.4 Approach Depressions
- 7.5.5 Nail-Laminated Decks
- 7.5.6 Deck Clip Rotation

7.6 RAILINGS AND CURBS

- 7.6.1 High-Solids Paints
- **7.6.2** Vertical Bolting
- **7.6.3** Proper Drainage
- 7.6.4 Impact Damage
- **7.6.5** Proper Durability or Preservation

7.7 DECAY AROUND FERRIC DEGRADATION AT FASTENERS

7.8 CONCLUSION

VOLUME 2: Detailing

CHAPTER 8: Timber Detailing for Longevity

INTRODUCTION

8.1 MOISTURE PROTECTION

- **8.1.1** Shedding Water
- **8.1.2** Airflow
- **8.1.3** Surface Finishes
- 8.1.4 Avoid Vertical Fasteners

8.2 PREFABRICATION AND TREATMENT

8.2.1 Treatment Boring

8.3 ANISOTROPIC PROPERTIES: AVOIDING TENSION PERPENDICULAR TO GRAIN

- **8.3.1** Slope of Grain
- **8.3.2** Notches and Re-entrant Corner Cracking
- 8.3.3 Crosswise Bending
- 8.3.4 Fastener End- and Edge-Distance
- **8.3.5** Shrinkage at Connections

8.4 ALLOW FOR SHRINKAGE

- **8.4.1** Shrinkage Checks
- **8.4.2** Connections
- 8.4.3 Deck Joints
- **8.4.4** Vertical Girder Shrinkage

8.5 DESIGN FOR FIRE RESISTANCE

- **8.5.1** Structural Configuration
- **8.5.2** Preservative Selection
- 8.5.3 Chemical Fire Protection
- **8.5.4** Fire Protective Coverings
- **8.5.5** Minimize Decay
- **8.5.6** Site Maintenance

8.6 REFERENCES

CHAPTER 9: Timber Bridge Maintenance Details

9.1 CHECK AND RETIGHTEN FASTENERS

9.2 CLEANING

- **9.2.1** Soil and Debris at Girder Seats
- **9.2.2** Debris and Vegetation around Piers
- **9.2.3** Debris on Deck
- 9.2.4 Scuppers and Deck Drains

9.3 FIELD TREATMENT

- **9.3.1** Remedial Preservatives
- 9.3.2 Diffuser Installation
- 9.3.3 Diffuser Replenishment
- **9.3.4** Insecticides

9.4 PAINTS AND SEALANTS

9.5 STEEL COMPONENTS

CHAPTER 10: Timber Bridge Restoration Details

10.1 ELIMINATE VERTICAL FASTENERS

- 10.1.1 Deck to Girder
- 10.1.2 Girder to Timber Cap
- 10.1.3 Girder to Concrete Seat
- **10.1.4** Cap to Pile
- **10.1.5** Curb to Deck

10.2 DRAINAGE AND AIRFLOW

- 10.2.1 Remove Inappropriate Moisture Barriers
- **10.2.2** Ensure Flashing is Vented
- 10.2.3 Ensure Air Gap at Girder Ends
- 10.2.4 Install Scuppers
- 10.2.5 Install Deck Drains
- 10.2.6 Add Crown to Wear Surface

10.3 SUBSTRUCTURE REPAIRS

- **10.3.1** Scour Protection
- 10.3.2 Pile Posting
- 10.3.3 Dutchman's Patch Pile Sleeve

- 10.3.4 FRP Wrap
- 10.3.5 Epoxy Injection
- **10.3.6** Driving New Piles
- 10.3.7 Pumping Pile
- 10.3.8 Wales, Sashes, Braces Kind-for-Kind Replacement
- 10.3.9 Wales, Sashes, Braces FRP Reinforcement
- **10.3.10** Cap Repair
- 10.3.11 Abutment Sheathing
- 10.3.12 Pier Fenders
- 10.3.13 Cribbing Repair

10.4 SUPERSTRUCTURE REPAIR

- 10.4.1 Slope-Cut Notches
- 10.4.2 Girder Replacement
- 10.4.3 Sistered Girders
- 10.4.4 Spike Damage Repair
- 10.4.5 FRP Tensile Reinforcement
- 10.4.6 FRP Shear Panel
- 10.4.7 Horizontal Crack Repair

10.5 DECK REPAIR

- 10.5.1 Transverse Plank Deck
- **10.5.2** Transverse Panel Deck
- 10.5.3 Longitudinal Deck
- 10.5.4 Stress-Laminated Decks
- 10.5.5 Nail-Laminated Deck

10.6 WEAR SURFACE REPAIR

- **10.6.1** Running Plank Replacement
- **10.6.2** Asphalt Crack Repair
- **10.6.3** Asphalt Resurfacing
- **10.6.4** Asphalt Remove and Replace

10.7 BARRIER REPAIR

- 10.7.1 Element Replacement
- **10.7.2** Full Replacement
- 10.7.3 Crash-Rated Barriers
- 10.7.4 Guardrail Transitions
- 10.7.5 Handrail Repair

10.8 REFERENCES

VOLUME 3: Advanced Design Considerations (Coming Soon)

GLOSSARY

ABBREVIATIONS